Transforming growth factor beta superfamily
Transforming growth factor beta like domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() Structure of human transforming growth factor-beta 2.[1]
|
|||||||||
Identifiers | |||||||||
Symbol | TGF_beta | ||||||||
Pfam | PF00019 | ||||||||
InterPro | IPR001839 | ||||||||
PROSITE | PDOC00223 | ||||||||
SCOP | 1tfg | ||||||||
SUPERFAMILY | 1tfg | ||||||||
|
The transforming growth factor beta (TGF-β) superfamily is a large family of structurally related cell regulatory proteins that was named after its first member, TGF-β1, originally described in 1983.[2]
Many proteins have since been described as members of the TGF-β superfamily in a variety of species, including invertebrates as well as vertebrates and categorized into 23 distinct gene types that fall into four major subfamilies:[3][4][5]
- The TGFβ subfamily
- The decapentaplegic Vg-related (DVR) related subfamily (including the bone morphogenetic proteins and the growth differentiation factors)
- The activin and inhibin subfamily
- A group encompassing various divergent members
Transforming growth factor-beta (TGF-beta)[6] is a multifunctional peptide that controls proliferation, differentiation and other functions in many cell types. TGF-beta-1 is a peptide of 112 amino acid residues derived by proteolytic cleavage from the C-terminal of a precursor protein. These proteins interact with a conserved family of cell surface serine/threonine-specific protein kinase receptors, and generate intracellular signals using a conserved family of proteins called SMADs. They play fundamental roles in the regulation of basic biological processes such as growth, development, tissue homeostasis and regulation of the immune system.[3]
Structure
Proteins from the TGF-beta family are only active as homo- or heterodimer; the two chains being linked by a single disulfide bond. From X-ray studies of TGF-beta-2,[7] it is known that all the other cysteines are involved in intrachain disulfide bonds. As shown in the following schematic representation, there are four disulfide bonds in the TGF-beta's and in inhibin beta chains, while the other members of this family lack the first bond.
interchain | +------------------------------------------|+ | || xxxxcxxxxxCcxxxxxxxxxxxxxxxxxxCxxCxxxxxxxxxxxxxxxxxxxCCxxxxxxxxxxxxxxxxxxxCxCx | | | | | | +------+ +--|----------------------------------------+ | +------------------------------------------+
where 'C' denotes a conserved cysteine involved in a disulfide bond.
Examples
Human genes encoding proteins that contain this domain include:
AMH; ARTN; BMP10; BMP15; BMP2; BMP3; BMP4; BMP5; BMP6; BMP7; BMP8A; BMP8B; GDF1; GDF10; GDF11; GDF15; GDF2; GDF3; GDF3A; GDF5; GDF6; GDF7; GDF8; GDF9; GDNF; INHA; INHBA; INHBB; INHBC; INHBE; LEFTY1; LEFTY2; MSTN; NODAL; NRTN; PSPN; TGFB1; TGFB2; TGFB3;
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.