Phenylacetaldehyde

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Phenylacetaldehyde
200px
Names
IUPAC name
2-Phenylacetaldehyde
Other names
Hyacinthin
Phenylethanal
Identifiers
122-78-1 YesY
385791
ChemSpider 13876539 N
Jmol 3D model Interactive image
PubChem 998
UNII U8J5PLW9MR YesY
  • InChI=1S/C8H8O/c9-7-6-8-4-2-1-3-5-8/h1-5,7H,6H2 N
    Key: DTUQWGWMVIHBKE-UHFFFAOYSA-N N
  • InChI=1/C8H8O/c9-7-6-8-4-2-1-3-5-8/h1-5,7H,6H2
    Key: DTUQWGWMVIHBKE-UHFFFAOYAO
  • O=CCc1ccccc1
Properties
C8H8O
Molar mass 120.15 g/mol
Appearance Colorless liquid
Density 1.079 g/mL
Melting point −10 °C (14 °F; 263 K)
Boiling point 195 °C (383 °F; 468 K)
2.210 g/L
1.526
Vapor pressure {{{value}}}
Related compounds
Related 2-phenyl aldehydes
3,4-Dihydroxyphenylacetaldehyde

Phenylglyoxal

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Phenylacetaldehyde is an organic compound used in the synthesis of fragrances and polymers.[1]

Natural Occurrence

Phenylacetaldehyde occurs extensively in nature because it can be biosynthetically derived from the amino acid phenylalanine. Natural sources of the compound include chocolate,[2] buckwheat,[3] flowers, and communication pheromones from various insect orders.[4]

Uses

Fragrances and flavors

The aroma of pure substance can be described as honey-like, sweet, rose, green, grassy and is added to fragrances to impart hyacinth, narcissi, or rose nuances.[1] For similar reasons the compound can sometimes be found in flavored cigarettes and beverages.

Historically, before biotechnology approaches were developed, phenylacetaldehyde was also used to produce phenylalanine via the Strecker reaction as a step in the production of aspartame sweetener.[1]

Polymers

Phenylacetaldehyde is used in the synthesis of polyesters where it serves as a rate-controlling additive during polymerization.[1]

Natural Medicine

Phenylacetaldehyde is responsible for the antibiotic activity of maggot therapy.[5]

Preparation

Phenylacetaldehyde can be obtained via various synthetic routes and precursors. Notable examples include:

Reactivity

Phenylacetaldehyde is often contaminated with polystyrene oxide polymer because of the especial lability of the benzylic alpha proton and the reactivity of the aldehyde. Aldol condensation of the initial dimer gives rise to a range of Michael acceptors and donors.

References

  1. 1.0 1.1 1.2 1.3 1.4 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.