Order-6 dodecahedral honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Order-6 dodecahedral honeycomb
H3 536 CC center.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol {5,3,6}
{5,3[3]}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png
Cells {5,3} Dodecahedron.png
Faces pentagon {5}
Edge figure hexagon {6}
Vertex figure {3,6}
Uniform tiling 63-t2.png Uniform tiling 333-t1.png
Dual Order-5 hexagonal tiling honeycomb
Coxeter group HV3, [5,3,6]
HP3, [5,3[3]]
Properties Regular, quasiregular

The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, being composed of dodecahedral cells, each edge of the honeycomb is surrounded by six dodecahedra. Each vertex is ideal and surrounded by infinitely many dodecahedra with a vertex figure as a triangular tiling.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A half symmetry construction exists as CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png with alternately colored dodecahedral cells.

Images

320px
The model is cell-centered in the within Poincaré disk model, with the viewpoint then placed at the origin.

It is similar to the 2D hyperbolic infinite-order pentagonal tiling, {5,∞} with pentagonal faces. All vertices are on the ideal surface.

H2 tiling 25i-4.png

Related polytopes and honeycombs

It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells or vertex figures.

There are 15 uniform honeycombs in the [5,3,6] Coxeter group family, including this regular form and its regular dual, order-5 hexagonal tiling honeycomb, {6,3,5}.

[6,3,5] family honeycombs
{6,3,5} r{6,3,5} t{6,3,5} rr{6,3,5} t0,3{6,3,5} tr{6,3,5} t0,1,3{6,3,5} t0,1,2,3{6,3,5}
H3 635 FC boundary.png 80px
H3 536 CC center.png 80px
{5,3,6} r{5,3,6} t{5,3,6} rr{5,3,6} 2t{5,3,6} tr{5,3,6} t0,1,3{5,3,6} t0,1,2,3{5,3,6}

This honeycomb is a part of a sequence of polychora and honeycombs with triangular tiling vertex figures:

Hyperbolic uniform honeycombs: {p,3,6}
Form Paracompact Noncompact
Name {3,3,6} {4,3,6} {5,3,6} {6,3,6} {7,3,6} {8,3,6} ... {∞,3,6}
Image H3 336 CC center.png H3 436 CC center.png H3 536 CC center.png H3 636 FC boundary.png
Cells Tetrahedron.png
{3,3}
Hexahedron.png
{4,3}
Dodecahedron.png
{5,3}
Uniform tiling 63-t0.png
{6,3}
H2 tiling 237-1.png
{7,3}
H2 tiling 238-1.png
{8,3}
H2 tiling 23i-1.png
{∞,3}

This honeycomb is a part of a sequence of polychora and honeycombs with dodecahedral cells:

<templatestyles src="Template:Hidden begin/styles.css"/>

{5,3,p} polytopes
{5,3,p}
Space S3 H3
Form Finite Compact Paracompact Noncompact
Name {5,3,3} {5,3,4} {5,3,5} {5,3,6} {5,3,7} {5,3,8} ... {5,3,∞}
Image Schlegel wireframe 120-cell.png H3 534 CC center.png H3 535 CC center.png H3 536 CC center.png H3 53i UHS plane at infinity.png
Vertex
figure
Tetrahedron.png
{3,3}
Octahedron.png
{3,4}
Icosahedron.png
{3,5}
Uniform tiling 63-t2.png
{3,6}
H2 tiling 237-4.png
{3,7}
H2 tiling 238-4.png
{3,8}
H2 tiling 23i-4.png
{3,∞}

Rectified order-6 dodecahedral honeycomb

Rectified order-6 dodecahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{5,3,6}
t1{5,3,6}
Coxeter diagrams CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png
Cells r{5,3} Uniform polyhedron-53-t1.png
{3,6} Uniform tiling 63-t2.png
Vertex figure 100px
Hexagonal prism { }×{6}
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
Coxeter groups {\bar{VH}}_3, [6,3,5]
[5,3[3]]
Properties Vertex-transitive, edge-transitive

The rectified order-6 dodecahedral honeycomb, t1{5,3,6} has icosidodecahedron and triangular tiling cells connected in a hexagonal prism vertex figure.

320px
Perspective projection view within Poincaré disk model

It is similar to the 2D hyperbolic infinite-order square tiling, r{5,∞} with pentagon and apeirogonal faces. All vertices are on the ideal surface.

H2 tiling 25i-2.png
r{p,3,6}
Space H3
Form Paracompact Noncompact
Name r{3,3,6}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{4,3,6}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{5,3,6}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{6,3,6}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{7,3,6}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
... r{∞,3,6}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Image 80px 80px 80px 80px
Cells
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform polyhedron-33-t1.png
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{6,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 237-2.png
r{∞,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Truncated order-6 dodecahedral honeycomb

Truncated order-6 dodecahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{5,3,6}
t0,1{5,3,6}
Coxeter diagrams CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png
Cells t{5,3} Uniform polyhedron-53-t01.png
{3,6} Uniform tiling 63-t2.png
Vertex figure 100px
Hexagonal pyramid { }v{6}
Coxeter groups {\bar{VH}}_3, [6,3,5]
[5,3[3]]
Properties Vertex-transitive

The truncated order-6 dodecahedral honeycomb, t0,1{5,3,6} has truncated dodecahedron and triangular tiling cells connected in a hexagonal pyramid vertex figure.

See also

References